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• w: exogenous signal, including noises, disturbances, and commands.

• z: output signal that contains the critical performance variables.

• y: continuous signal transmitted over the network.

• yr: recieved decoded version of y.
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Problem Setup

LTI System

w z

r1y 

yrM

y

yM

1

• The signals yi are coded using memoryless uniform quantizers, with possibly dif-

ferent numbers of bits and scale factors.

• Time-delays assumed known and fixed, and modeled as part of the LTI system.
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Problem Setup

Many issues arise in the design of networked controllers:

• Bit rate limitations.

• Unmodeled time-delays.

• Packet loss.

• Transmission errors.

• Asynchronicity.

We will only consider the first issue, where the other ones assumed not to occur.
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Problem Setup

The paper concentrates on certain critical communication parameters such as:

• Individual channel transmission powers.

• Bandwiths allocated to the channels(or groups of channels).

• Time-slot fractions allocated to the channels(or group of channels).

We will refer to these parameters collectively as communication variables.

The communication variables indirectly limit the number of bits allocated to each quan-

tizer.
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Linear System Model

The LTI is described by

z = G11(φ)w +G12(φ)yr

y = G21(φ)w +G22(φ)yr

• Gij are LTI operators.

• φ ∈ Rq is the vector of design parameters in the LTI system that can be tuned or

changed to optimize the system.

• y(t), yr(t) ∈ RM are transmitted over the network during each sampling period.

• all communcation delays are assumed constant and known, and included in the LTI

system model.

6



Quantization Model
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A unit range uniform b-bit quantizer partitions the range [−1, 1] into 2b intervals of

unifrom width 21−b.

• Each quantization interval is assigned a codeword of b bits.

• Given the associated codeword, the value is reconstructed as ur, which is the

midpoint of the interval corresponding to the codeword.
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Quantization Model

• The relation between the original and reconstructed values is given by

round(2b−1)

2b−1

for |u| ≤ 1(which means an assumption of no overflow).

round(z) is the integer nearest to z:

round(2.73) = 3,

round(−5.3) = −5.

• The associated quantization error is given by

Eb(u) = ur − u =
round(2b−1u)− 2b−1u

2b−1

• |round(2b−1u)− 2b−1u| ≤ 2−1 =⇒ |Eb(u)| ≤ 2−b.
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Scaling
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• To avoid over¤ow, each yi(t) is scaled by the factor s−1

i > 0 prior to encoding and

again rescaled by the factor si, that is

yri(t) = siQbi
(yi(t)/si).

• Assuming |yi(t)| < si, the associated quantization error is given by

|qi(t)| = |yri(t)− yi(t)| = |siEbi
(yi(t)/si)| < si2

−bi .
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Scaling

• Possible choice for si is the maximum possible value of |yi(t)|, or a value with very

high probability larger than |yi(t)|.

Example: If yi is a Gaussian amplitude distribution, the choice (by the so-called

3σ-rule)

si = 3rms(yi)

ensures overlow occures only about 0.3% of the time.
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Quantization Error Model
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• Model the quantization errors qi(t) as white noise, uniformly distributed on the

interval

si[−2
−bi , 2−bi ].

with zero mean and variance

Eqi(t)
2 = (1/3)s2

i 2
−2bi .
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Performance

• Write z and y in terms of the inputs w and q:

z = Gzww +Gzqq, y = Gyww +Gyqq,

where

Gzw = G11 +G12(I −G22)
−1G21, Gzw = G12 +G21(I −G22)

−1G22

Gzw = (I −G22)
−1G21, Gzw = (I −G22)

−1G22

are the closed-loop transfer matrices from w and q to z and y, resp.

• The variance z introduced by the quantization is given by

Vq = E||Gzq||
2 =

M∑

i=1

||Gzqi||
2(1/3)s2

i 2
−2bi ,

where || · || denotes the L
2 norm.
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Performance

• Vq is used as a measure of the effect of quantization on the overall system perfor-

mance

− Assume w is modeled as a stationary stochastic process. Then the overall vari-

ance of z is given by

V = E||z||2 = Vq + E||Gzww||
2.

• let

Vq =
M∑

i=1

ai2
−2bi

where ai = ||Gzqi||2(1/3)s2
i .

• The expression shows how Vq depends on the allocation of quantizer bits b1, ..., bM ,

as well as the scalings s1, ..., sM .
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Communications Model

• Let θ denote the vector of communication variables.

• Let b ∈ R
M denote the vector of bits allocated to each quantized signal.

• The associated communication rate ri(bits/second) can be expressed as bi = αri,

where

α = cs/fs,

fs = sample frequency,

cs = channel coding efficiency(source bits/transmission bit).

• Hence capacity constraitns expressed in terms of bit allocations.
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Communications Model

General model to relate the vector of bit allocations b and the vector of communica-

tion variables θ:

fi(b, θ) ≤ 0, i = 1, ...,mf

hT
i θ ≤ di, i = 1, ...,mh

θi ≥ 0, i = 1, ...,mθ

bi ≤ bi ≤ b̄i, i = 1, ...,M
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Model Assumptions

• fi are convex functions of (b, θ), monotone increasing in b and monotone decreas-

ing in θ. Roughly speaking, the conditions mean that the capacity of the channels

increase with increasing resources.

• Second set of constraints describe resource limitations. Assume hi ≥ 0, di > 0.

• Communication resource variables assumed to be nonnegative.

• Lower and upper bounds for each bit allocation is assumed to be nonnegative.

Lower bounds are imposed to ensure that the white noise model for quantization

errors is reasonable. Upper bounds arise from hardware limitations.
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Examples of Channel Capacity Contraints

Frequency Division Multiple Access (FDMA) Gaussian Channels:

• A transmitter sends information to n recievers over disoint frequency bands with

bandwiths Wi ≥ 0 and assigns a transmit power Pi ≥ 0 to each band.

• Recievers subject to independent additive white Gaussian noises with power spec-

tral densities Ni.
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Examples of Channel Capacity Contraints

By the so-called Shannon capacity result, bit allocations bi and communications

variables θi = (Pi,Wi) are related by

bi ≤ αWi log2(1 + (Pi/NiWi))

m

fi(bi,Wi, Pi) = bi − αWi log2(1 + (Pi/NiWi)) ≤ 0,

i = 1, ..., n.

Fits our generic form!
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Examples of Channel Capacity Contraints

• fi(bi,Wi, Pi) is increasing in bi, decreasing in Wi and Pi.

• The function g(P ) = −α log2(1+(P/N) is convex(easly verified). Therefore its

perspective function

Wg(P/W ) = −Wα log2(1 + (P/WN)

is also convex. Consult (Boyd and Vanderberghe, Dec 2002) for a proof.

Hence f is convex.

• The communication variables are constrained by total resource limit

P1 + ...Pn ≤ Ptot

W1 + ...Wn ≤ Wtot

which have the generic form for total resource limit.
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Resource Allocation for Fixed Linear System

Assume Linear System is fixed.

• Objective: minimize variance of the performance signal z.

• Problem can be formulated as convex optimization problem:

minimize
M∑

i

ai2
−2bi

subject to

fi(b, θ) ≤ 0, i = 1, ...,mf

hT
i θ ≤ di, i = 1, ...,mh

θi ≥ 0, i = 1, ...,mθ

bi ≤ bi ≤ b̄i, i = 1, ...,M
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Joint Design of Communication and Linear Systems

• To optimize system performance, optimization of the parameters of the linear sys-

tem and the communication system should be done jointly.

• Joint design problem is in general not convex!
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Alternating Optimization for Joint Design

• Use heurestic method:

given initial linear system variables φ0, communication variables θ0, scalings s0

repeat

1. Fix φk, sk and optimize over θ. Let θk+1 be the optimal value.

2. Fix θk+1, sk and optimize over φ. Let φk+1 be the optimal value.

3. Fix φk+1, θk+1. Let sk+1 be appropriate scaling factors.

until convergence.

• Because of nonconvexity of the joint problem, convergence is not guarenteed.

• Works well in practice.
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Numerical example: control of mass-spring system
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Numerical example: control of mass-spring system

• Position sensors send measurements yi = xi + vi, where vi is the sensor noise,

to the controller through a Gaussian multiple access using FDMA.

• The controller recieves yi = xi + vi + qi, where qi is the quantization error.

• Actual force acting on each mass is urj = uj+wj+pj , wherewj is the exogenous

disturbance and pj is the quantization error.

• Mechanical system parameters: m1 = 10,m2 = 5,m3 = 20,m4 = 2,

m1 = 15, and k = 1.

• Discrete-time system is obtained using a sampling frequency that is 5 times faster

than the fastest mode of the coninuous-time dynamics.

24



Numerical example: control of mass-spring system

• w and v independent zero-mean white noises with covariance matrices

Rw = Rv = 10−6I.

• Actuators impose rms constraints on the control signals:

rms(ui) ≤ 1, i = 1, ..., 5

• The multiple access channel(mac) and broadcast channel(bc) have separate total

power limits Pmac,tot = Pbc,tot = 7.5, but they share a total bandwidth limit

Wtot = 10.

• All recievers have the same noise power density N = 0.1.

• Impose an upperbound b̄ = 12 and a lower bound b = 5 for all quantizers.
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Numerical example: control of mass-spring system

• Allocate power and bandwidth evenly to all sensors, which results in a uniform

allocation of eight bits for each channel.

• We want to minimize rms(z).

– Found rms(z) = 0.549 with fixed resource allocation.

– Using the alternating procedure, to do joint optimization of bit allocation and con-

troller design, we get rms(z) = 0.116 after four iterations. Hence, a reduction

of 77% in rms value compared with uniform bit allocation.
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